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Abstract. We introduce a generalized Yamaguchi rank-one separable potential withthree
parameters which has the separable Yukawa or central Yamaguchi potentials as limiting cases.
The three parameters can be obtained, when possible, from the set of experimental data (binding
energy, scattering length and effective range) by solving a simple cubic equation. We also
discuss a rank-two separable potential with one of the strengths infinite. For both potentials the
solutions can be expressed analytically.

1. Introduction

Separable nonlocal potentials have proved useful in the study of the few-nucleon problems,
particularly in the determination of the three-body binding energy using a two-body separable
interaction. Such potentials also yield simple analytical solutions in two-body systems,
which is helpful for gaining physical insight into these systems.

In this paper, we look at some novel separable interactions which we apply to the triplet
neutron–proton interaction for small positive energies together with the negative energy
corresponding to the (deuteron) binding energy. In sections 2 and 3 we consider particular
rank-one and rank-two potentials, respectively. As an application of the analytic solutions,
we show explicitly that the effective range has very little model dependence once the binding
energy and scattering length are fixed.

2. Generalized Yamaguchi rank-one separable potential

We introduce a separable potential which interpolates between a separable Yukawa and a
central Yamaguchi potential [1]. It is useful because it can give any value of the effective
range between those for these two potentials. The nonlocal potential is written in the form

V (p, p′) = − 2

π
λ30pp

′f (p)f (p′) (2.1)

with the form factor

f (p) = β1β2√
β2

1 + p2
√
β2

2 + p2
. (2.2)
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The quantityλ is a dimensionless parameter which is set equal to one when the potential
supports a zero-energy bound state. Thus30 is found from the zero-energy case and is
given by

30 = β1β2

β1+ β2
. (2.3)

At the deuteron bound-state energy for whichα 6= 0,

λ = (α + β1)(α + β2)

β1β2
. (2.4)

The effective range formula for the nonlocal potential is

k cotδ = β1β2

β1+ β2

[
1

λ

(
1+ k2

β2
1

)(
1+ k2

β2
2

)
−
(

1− k2

β1β2

)]
(2.5)

= − 1

at
+ 1

2
r0k

2− Pr3
0k

4. (2.6)

Thus, the scattering length, effective range and shape parameterP are given by the
expressions

at = λ(β1+ β2)

α(α + β1+ β2)
(2.7)

r0 = 2β1β2

β1+ β2

[
1

λ

(
1

β2
1

+ 1

β2
2

)
+ 1

β1β2

]
(2.8)

and

Pr3
0 = −

1

λβ1β2(β1+ β2)
= atα(2− αr0)− 2

2atα4
. (2.9)

For β1 = β2, we recover the Yamaguchi form factor, whereas in the limit asβ2

approaches infinity whileβ1 remains finite, we obtain the Yukawa form factor (see, for
example, [2]).

Let us consider the Yamaguchi case in more detail. We introduce a dimensionless
quantityx = β1/α. Then the strength parameter is given by

λ = (x + 1)2

x2
(2.10)

and the triplet scattering length and effective range are, respectively,

at = 2(x + 1)2

αx(2x + 1)
(2.11)

and

r0 = 1

α

(
2x

(x + 1)2
+ 1

x

)
. (2.12)

The following equation holds for the Yamaguchi potential:

αr0

2
− atα − 1

atα
= 1

2x(x + 1)2
. (2.13)

Now for weak binding, such as we have in the deuteron,α is small andx is large.
Thus the quantity on the right-hand side of equation (2.13) is small. Consequently the
effective range is determined mainly by the scattering length and deuteron binding energy.
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For the Yamaguchi potential, using neutron–proton data, namely,α = 0.2316 fm−1 and
at = 5.419 fm, we obtain

1
2αr0 = 0.2032+ 0.0017 (2.14)

andr0 = 1.754+ 0.015= 1.769 fm.
We can extend this result to the case of a generalized Yamaguchi potential. First of all

we will show that givenα andat , r0 can have only a small range of values with 1.754 and
1.769 fm as the lower and upper limit, respectively. Definingξ as

ξ = αr0

2
− atα − 1

atα
(2.15)

we find thatξ can be written as

ξ = α3

(β1+ β2)(α + β1)(α + β2)
= 1

(x + y)(1+ x)(1+ y) (2.16)

wherey = β2/α.
We can obtain the values ofβ1 andβ2, or equivalently ofx and y, as solutions of a

cubic equation. Let us define the quantitiesp andq by the equations

ξ = 1

p
and αat = p

q
. (2.17)

Then

p = (1+ x)(1+ y)(x + y) (2.18)

q = xy(1+ x + y). (2.19)

As can be seen in equations (2.18) and (2.19),p andq are functions of bothx andy, but
we can eliminatey to obtain an equation involving onlyx, i.e.

p

1+ x −
q

x
= x (2.20)

which can be written as a cubic equation forx

x3+ x2+ (p − q)x + q = 0. (2.21)

There is an identical equation fory. If equation (2.21) has two positive roots, one gives the
required value ofx and the other the value ofy. If we now take the values ofα andat used
earlier and the ‘experimental’ valuer0 = 1.752 fm [3], we find that equation (2.21) does
not have a pair of positive solutions. However, if the value ofr0 is changed to 1.756 fm,
there are two positive solutions, namely, 3.97 and 36.59. Table 1 shows the range of values
for r0, with fixedα andat , covered by the generalized Yamaguchi separable potential. Note
that this range is small with the Yamaguchi and Yukawa values as extremes.

Table 1. The rootsx andy of the cubic equation withat = 5.419 fm for various values of the
effective ranger0. The asterisk (*) indicates that there is no pair of positive solutions.

r0 <1.754 1.7549 1.756 1.760 1.764 1.768 1.76934 >1.77
x * 3.921 3.972 4.187 4.501 5.126 6.03 *
y * ∞ 36.592 15.475 10.471 7.498 6.03 *

Yukawa Yamaguchi
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In order to study further the model dependence ofr0 and to simplify the expressions,
we define a dimensionless quantityγ such that

γ = β1β2

β2
1 + β1β2+ β2

2

= xy

x2+ xy + y2
. (2.22)

The quantityγ is zero for the separable Yukawa potential andγ = 1
3 for the Yamaguchi

potential. For the values ofβ1 andβ2 for the case mentioned above whenr0 = 1.756 fm,
we haveγ = 0.0969. If we rewrite equation (2.15) as

αr0

2
= αat − 1

αat
+ ξ (2.23)

it is clear that the model dependence ofr0 is contained in theξ term. Expandingξ in terms
of ε = atα − 1 (ε = 0.2550 for the neutron–proton case), we obtain

ξ = c0+ c1ε + c2ε
2+ c3ε

3+ · · · (2.24)

and we find thatc0 = c1 = c2 = 0 andc3, c4, . . . , are functions ofγ . Explicit expressions
for c3 andc4 arec3 = γ 2(1+ γ ) andc4 = −γ 2(1+ 2γ + 4γ 2 + 3γ 3). In particular, asγ
varies from 0 to1

3, c3 increases monotonically from 0 to427.

3. Rank-two separable potential

3.1. General results

A rank-two separable potential with Yamaguchi form factors leads to algebraic expressions
for most quantities of interest. In the notation of [2], the potential has the form

V (p, p′) = 2

π
pp′[λ1f1(p)f1(p

′)+ λ2f2(p)f2(p
′)]. (3.1)

The scattering phase shifts and the deuteron energy can be written in terms of the integrals

Iij (k
2) = 2

π

∫ ∞
0

fi(q)fj (q)

k2− q2
q2 dq i, j = 1, 2 (3.2)

whereIij (k2) is the principal value of the integral whenk2 > 0. The scattering phase shift
δ(k) is given by

k cotδ(k) = −D(k
2)

N (k) (3.3)

where

D(k2) = [1− λ1I11(k
2)][1 − λ2I22(k

2)] − λ1λ2I
2
12(k

2) (3.4)

and

N (k) = λ1f
2
1 (k)[1− λ2I22(k

2)] + 2λ1λ2f1(k)f2(k)I12(k
2)+ λ2f

2
2 (k)[1− λ1I11(k

2)].

(3.5)

The bound-state energy−α2 < 0 can be obtained by solving the equation

D(−α2) = 0. (3.6)

The bound-state wavefunction in momentum space is

ũ(p) = N p

p2+ α2

[
λ1f1(p)+ 1− λ1I11(−α2)

I12(−α2)
f2(p)

]
(3.7)

whereN is the normalization constant.
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3.2. Strength parameterλ2 infinite

We now consider the special case with Yamaguchi form factors,

f1(p) = β2
1

p2+ β2
1

f2(p) = β2
2

p2+ β2
2

. (3.8)

Of special interest is the situation for which one of the strength parameters is finite and
negative and the other is infinite, simulating an infinite short-range repulsion (repulsive
core) when the range parameter associated with the repulsive term is the larger of the two.
We set

λ1 = −λ30 λ2 = λ30η (3.9)

where eventuallyη approaches infinity. As with the single-term separable potential of
section 2,λ is a dimensionless parameter chosen so that it is unity when the potential
supports a zero-energy bound state. Thus

30 = 2

β1

(
β1+ β2

β1− β2

)2

λ = (β1+ α)2
β2

1

. (3.10)

Again settingβ1 = xα andβ2 = yα, we obtain for the scattering length

at = 2
2β2

1α + β2
1β2+ β1α

2+ 2β1β2α + β2α
2

β1β2α(2β1+ α)
= 2

α

2x2+ x2y + x + 2xy + y
xy(2x + 1)

(3.11)

and for the effective range

r0 =
(
8x5y + 4x5y2+ 4x5+ 3x4y3+ 4x4+ 20x4y + 16x4y2+ 16x3y + x3+ 8x3y3

+24x3y2+ 8x2y3+ 4yx2+ 16x2y2+ 4xy2+ 4xy3+ y3
)

×(αyx(yx2+ 2x2+ 2xy + x + y)2)−1
. (3.12)

If we suppose thatα = 0.2316 fm−1, at = 5.419 fm andr0 some given value, we can solve
for β1 andβ2. As with the rank-one separable potential, there is a small range of values of
r0 (r0 = 1.770–1.782 fm) for which physical solutions for theβ ’s exist. That the effective
range is close to the experimental value ofr0, but does not include it, can be attributed to
the simplicity of the model. Again we can determine the model-dependent contribution to
the effective range by expandingξ in terms ofε as in equation (2.24). As before we find
that c0 = c1 = c2 = 0 andc3 is a simple expression ofν = β1/β2, i.e.

c3 = 4(ν + 1)(4ν2+ 8ν + 1)

(4ν + 3)3
. (3.13)

As ν varies from 0 to 1 (i.e.β2 > β1), c3 increases monotonically from4
27 to 0.303. Although

the model dependence of the effective range is approximately the same magnitude as that of
the generalized Yamaguchi potential, this potential yields effective ranges which are equal to
or larger than the maximum of the generalized Yamaguchi potential. The model dependence
of the effective range is also discussed in [4] in which the authors consider the difference
between the mixed effective range and the effective range at the deuteron pole. Their result
is of the same order of magnitude as ours.

The bound-state wavefunction in coordinate space is given by

u(r) = N
[

e−αr − (β1+ β2)(β2− α)
(β2− β1)(β2+ α)e−β1r + 2β2(β1− α)

(β2− β1)(β2+ α)e−β2r

]
. (3.14)
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Figure 1. The bound-state wavefunctionu(r) of the potential discussed in section 3.2 which
givesr0 = 1.782 fm (x = 11.34 andy = 16.55).

It is interesting to note, as shown in figure 1, that the wavefunction has a node, even though
it represents the ground state. Such nodes in the scattering and bound-state wavefunction
of nonlocal potentials have been discussed in the literature [5]. More recently nodes in the
ground-state wavefunction have been related to supersymmetric potentials in which a deep
bound state has been removed by making a supersymmetric transformation which leaves the
other bound-state energy and positive-energy phase shifts unchanged [6–8]. To understand
the node in the present case, consider the Schrödinger equation in coordinate space. We
have obtained a finite non-zero solution even thoughλ2 is infinite, which implies that the
corresponding potential term must be finite. Consequently,u(r) must be orthogonal to
f2(r), and indeed the wavefunction given above is easily checked to be orthogonal to e−β2r .

4. Discussion

We have introduced a novel rank-one separable potential which interpolates between the
separable Yukawa and Yamaguchi potentials. It is useful for analytically discussing the
low-energy behaviour of the scattering parameters.

The rank-two separable potential with infinite repulsion yields straightforward analytic
expressions for the scattering length and effective range. We find that the deuteron
wavefunction has a node, which is due to the orthogonality of the bound-state wavefunction
and the form factor of the infinite term of the potential.

In both models we see analytically the small model dependence of the effective range
once the binding energy and scattering length are fixed. Although the small model
dependence is known from fitting realistic nucleon–nucleon potentials, this feature is
elucidated through these simple models.
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